Anneaux intègres et homomorphismes d'anneaux - TD 3

1. Montrer que $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}.$

2. Montrer que $\mathbb{Q}[\sqrt{2}, \sqrt{3}] = \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} \mid a, b, c, d \in \mathbb{Q}\}.$

3. Montrer que $\mathbb{R}[\sqrt{2}, \sqrt{3}] = \mathbb{R}$.

4. Montrer que $\mathbb{R}[i] = \mathbb{C}$.

5. Soit R un anneau. Montrer que R est intègre si et seulement si R[x] est intègre. Si R est un corps, est-ce que R[x] est un corps ?

6. Montrer que la composition des homomorphismes d'anneaux est aussi un homomorphisme d'anneaux.

7. Montrer que $f: \mathrm{Diag}_{2\times 2}(\mathbb{R}) \to \mathbb{R}^2$, $\left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) \mapsto (a,b)$ est un isomorphisme d'anneaux.

8. Montrer que $f: \mathbb{Z}^2 \to \mathbb{Z}$, $(a,b) \mapsto a$ est un homomorphisme d'anneaux. Est-ce que f est un isomorphisme ?

9. Soit $f: R \to S$ un homomorphisme d'anneaux. Montrer que :

- (a) Im f est un sous-anneau de S.
- (b) $\operatorname{Ker} f$ est n'est pas un sous anneau de R.

10. Soit $f: R \to S$ un isomorphisme d'anneaux. Montrer que R est un anneau intègre (respectivement un corps) si et seulement si S est un anneau intègre (respectivement un corps).

11. Soient $(a,b),(c,d) \in \mathbb{R}^2$. Posons $(a,b)+(c,d):=(a+c,b+d), (a,b)\cdot(c,d):=(ac,bd)$ et $(a,b)\times(c,d):=(ac-bd,ad+bc)$. Nous avons montré que que $(\mathbb{R}^2,+,\cdot)$ et $(\mathbb{R}^2,+,\times)$ sont des anneaux. Est-ce que les deux anneaux sont isomorphes? Montrer que $(\mathbb{R}^2,+,\times)$ est isomorphe à \mathbb{C} .

12. Est-ce que les anneaux $\mathbb{Z}[i]$ et $\mathbb{Z}[\sqrt{2}]$ sont isomorphes ?